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It is shown that the accumulation of small-amplitude gasdynamic perturbations is 
able to accelerate the process of self-ignition of a homogeneous explosive mixture. 
For analytical simplicity, the chemical kinetics are represented by a one-step 
irreversible reaction with a large activation energy. A one-dimensional piston- 
cylinder geometry is considered, which allows a slow compression of the gas 
during the induction period. It is assumed that the rates of temperature increase due 
to  the reaction and due to the compression are comparable. A two-timescale 
asymptotic expansion for small Mach numbers is performed considering the 
distinguiehed limit M E  = 0(1), where E is the non-dimensional activation energy, 
and M is the Mach number based on a characteristic speed of the gas motion. 
Gasdynamic-chemical interaction is observed a t  the second order, where the secular 
equations describing the evolution on the slow timescale explicitly show a cumulative 
influence. 

1. Introduction 
In  many practical combustion systems the Mach number, typically based on the 

flame speed, is very small. I n  the limit of zero Mach number the pressure is spatially 
uniform, which leads to considerable simplification in the analysis. Such a treatment, 
however, ignores the fact that combustion chemistry is very sensitive to temperature 
perturbations. Owing to this sensitivity even weak pressure waves may cause 
temperature perturbations that are large enough to change the reaction rates by an 
O(1) amount. 

Clarke (1978) has considered the interaction of smaI1-amplitude gasdynamic 
disturbances (including weak shock waves) with a large-activation-energy reaction. 
He found important effects in a regime where the amplitudes of the disturbances are 
of the same order of magnitude as the inverse of the non-dimensional activation 
energy. Since his analysis is restricted to simple waves in an unconfined atmosphere, 
he can follow the evolution of the wave amplitude along a characteristic line. One 
important result is that the time to ignition is significantly reduced by an initial 
compression, such that a local explosion occurs first on the characteristic that  has the 
largest initial pressure disturbance. 

Clarke & Cant (1984) investigated a model for the shock-tube autoignition 
experiment. In  this model a strong shock is generated by the impulsive start of a 
piston. The shock initiates the induction process that usually precedes autoignition 
in a premixed explosive gas. It is shown that the time to ignition lies between the 
values calculated for constant-density and for constant-pressure conditions. Driven 
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by thermal expansions due to the onset of chemical reactions, an acoustic flow field 
evolves between the piston and the shock. Two characteristic coordinates are 
introduced to account for wavelets that travel in opposite directions. It is shown how 
the state of any fluid particle in the field is influenced by acoustic perturbations 
arriving on wavepaths, as well as by the chemical reaction that has taken place in the 
fluid particle itself. Up to ignition, deviations from the initial state behind the shock 
are small such that the dependent variables are expanded around their constant 
initial values. 

On the other hand, G. H. Schneider (1979) considered leading-order variations of 
the dependent variables in his study of the slow compression of an inert gas in a one- 
dimensional piston-cylinder system. His objective was to show how the accumulation 
of multiple reflected weak shock waves leads to a bulk pressure rise corresponding to 
quasi-static and adiabatic compression. To account for the slow O(1)-changes of the 
dependent variables Schneider used multiple scaling based on the short acoustic time 
and the long timescale of the piston motion. A characteristic formulation was 
employed in order to calculate the paths of the weak shocks in terms of Lagrangian 
coordinates, but no uniformly valid solution for the coordinate perturbations was 
derived (cf. also W. Schneider 1978). 

Recently, Radwhan & Kassoy (1984) investigated the behaviour of a confined 
inert gas, which is subject to moderate heating a t  the boundary. An acoustic time 
analysis shows how gas expansions in the initially thin conduction layers cause 
acoustic perturbations in the isentropic core of the system. After long times of 
heating the conduction-dominated regions are no longer small, and by means of a 
multiple timescaling the evolution of the acoustic flow field on a slowly varying mean 
field is described. It is argued that the acoustic disturbances are too weak to steepen 
up to  shock waves, and thus there is no need to perform a characteristic 
transformation. 

One of the easiest examples where chemistry is important is thermal self-ignition. 
Recently, there has been a renewed interest in thermal ignition theory in relation to 
the problem of engine knock. In a reciprocating engine, combustion takes place in a 
highly turbulent flow field whose properties are not well understood. Although 
several gasdynamic and chemical mechanisms have been proposed in the past to 
explain engine knock, it is not possible to decide which one dominates under the 
various operating conditions of an engine. A classical explanation is the autoignition 
of the unburnt gas before the arrival of the flame. If the end gas could be assumed 
to be entirely homogeneous, thermal runaway would depend on the chemistry alone. 
However, since acoustic waves traverse the end gas, we believe that chemical- 
acoustic interactions must also be considered. 

2. Formulation 
We assume that, in the combustion chamber of a spark-ignition engine, weak 

pressure waves are generated by fast variations of heat release within the turbulent 
flame, including localized explosions. These waves traverse the zone of the unburnt 
end gas and are reflected repeatedly a t  the boundaries. We expect a cumulative 
influence of the pressure waves on the evolution of the chemical reactions in the 
unburnt gas. In  addition, the end gas undergoes a slow bulk compression due to the 
thermal expansion of the burning gas in the flame. We shall refer to this effect as 
thermal compression in the following. It is expected that, for a certain range of 
pressure wave amplitudes and a sufficiently high temperature sensitivity of the 
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reaction rates, there is an acceleration of the autoignition process due to the 
background compression as well as due to direct interactions of the pressure waves 
with the chemical reaction. We shall now explain the model problem and define a 
distinguished asymptotic limit by introducing characteristic timescales for the 
several processes involved and by specifying their relative orders of magnitude. 

The chemical ignition process is characterized by the ignition delay time t,, which 
is the time span of the induction process preceding autoignition in a homogeneous 
system at constant density. This definition will be used throughout, whereas for the 
time interval of thermal runaway in the non-homogeneous systems, to be considered 
below, we shall employ the term ‘time to ignition ’. The ignition delay time t ,  only 
depends on the kinetic properties of the reaction process and on the initial pressure 
and temperature. In  the present work the chemistry will be modelled by an 
exothermic first-order irreversible reaction with an Arrhenius-type temperature 
dependence of the reaction rate r ,  given by 

r =  BY ex*(--&), 

where Y is the fuel mass fraction, T the temperature, R the specific gas constant, B 
the frequency factor and E the activation energy. If the non-dimensional activation 
energy E/RT,  is large, Frank-Kamenetskii’s classical theory of thermal runaway 
shows that the ignition delay time is given by 

Here -Ah is the heat of reaction ; y = cp /cv ,  where c p  and c, are the specific heat 
capacities a t  constant pressure and volume, respectively, and it is assumed that 
c p  = y R / ( y -  1) is constant. The subscript a denotes initial averaged quantities. 
During the induction stage of the ignition process the rate of temperature increase 
is Of&), when measured in units of Ta/t,. This suggests the definition of the charac- 
teristic reaction timescale 

I‘ E ’  

t 
t =1 (2.3) 

which is not an independent scale in the asymptotic regime but will prove to be useful 
in later discussions. Another important time, provided by the speed of pressure wave 
propagation, is 

1 
L 

t, = -. 
a, 

(2.4) 

Here a, is the initial average speed of sound and 1 is a characteristic length of the 
system. The pressure waves induce a characteristic gas velocity ug, thereby giving 
rise to the definition of 

the characteristic time of the gas motion. If, in addition, there is an overall thermal 
compression an additional timescale appears, 

t, = gs):, 
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FIGURE 1. The model : a reactive gas compressed within a piston-cylinder system undergoing 
additional pressure perturbations. 

which characterizes the rate of compression. It is important to keep in mind, that 
there is no direct physical connection between the pressure waves and the rate of 
thermal compression of the end gas. Therefore tg and t, may be chosen independently. 

In summary, the problem is to be formulated such that the simultaneous influence 
of thermal compression and of many acoustic perturbations on the thermal runaway 
of an explosive gas in a combustion chamber can be investigated. Both these effects 
will be simulated by a closed piston-cylinder system, in which a slow piston motion 
causes a bulk compression and in which appropriate initial conditions create the 
desired pressure waves (cf. figure 1). For this model the timescales t, and t ,  can be 
expressed as t, = Xp(0)/u, and t, = X,(O)/max (Up), where u, is a gas velocity 
characterizing the initial perturbations and U p  = dXp/dt is the prescribed piston 
velocity. 

Although we assume small-amplitude disturbances, we are faced with the 
nonlinearities of gasdynamic wave propagation. These will become important due to 
accumulation over many acoustic time periods. Following the work of G. H. 
Schneider (1979) we employ the analytical method of characteristics together with 
the method of multiple timescaling in order to obtain an accurate description of the 
wave propagation valid even for long periods of time. (Reviews of these perturbation 
methods can be found in Kluwick 1981 and W. Schneider 1978.) 

In  $ 3  we first consider a chemically inert gas at constant entropy and develop the 
principle steps of the method. As a small expansion parameter the Mach number 

t M = S < 1  
4 

will be used. For the special case that the gasdynamic disturbances are assumed to 
result from the piston motion, such that 

our leading-order solution coincides with G. H. Schneider’s result revealing the 
quasi-static compression as an asymptotic limit. In addition, a nonlinear equation 
for the slow time evolution of the pressure perturbations is derived, which describes 
the steepening of initially smooth waves up to weak shocks. 

In $4 we investigate the thermal runaway. First, in $4.1, we neglect the gas- 
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dynamic disturbances and consider the case of homogeneous compression. It turns 
out that rather weak rates of compression acting on the timescale tr are sufficient 
to cause an O(1)-change of the time to ignition. Thus, wherever a chemically 
active gas is considered in the following, we restrict the characteristic time t, of 
the piston motion to obey 

(2.9) 
t 
2 = O(1).  
tr 

In $4.2 we approach the complete model problem of the ignition of a slowly 
compressed reactive gas, which is perturbed by multiple reflected weak pressure 
waves. A simple consideration of the reaction rate r shows that a considerable 
influence of the pressure waves on the chemical reaction appears, if the Mach 
number, measuring the amplitudes of pressure and temperature, and the activation- 
energy parameter e, describing the temperature sensitivity of the chemical reactions, 
are of the same order of magnitude. Thus we consider the distinguished limit 

M 
(2.10) -= 0(1), e + O .  e 

Since we are interested in a cumulative interaction we now set 

(2.11) 

such that the pressure waves pass the cylinder many times before ignition takes 
place. Employing this new definition of M we can use the ratio t,/t, to  measure the 
initial amplitudes of the disturbances. The appropriate scaling is 

t 
1 = O(1) .  
tl 

Also, with (2.3), and (2.9) and (2.10) it follows that 

(2.12) 

(2.13) 

Note that in the ignition problem the perturbations can no longer result from the 
same mechanism as the bulk compression, since the piston and gas velocities differ 
by an order of magnitude. 

The relevance of the regime stated in (2.11)-(2.13) can be supported by considering 
the typical pressure-crank angle diagram given in figure 2. The characteristic time 
t, of wave propagation is estimated to be 

1 

a a  
t, = - x 1.7 x 10-5 s, 

where 1 x m is a characteristic height of the combustion chamber and a, x 
590 m/s is the speed of sound in air a t  p = 60 bar, calculated under the assumption 
of an isentropic compression starting from ambient conditions with To = 273 K, 
p ,  = 1 atm. During the gas exchange one observes velocities of about 30 m/s, such 
that 

7 

t, = 4 x 3 x 1 0 - 4  s. 
U g  
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FIGURE 2 .  A typical pressure-crank angle diagram of a knocking engine. 

Assuming that the thermal compression of the end gas is nearly isentropic, one may 
estimate t, in terms of the slope dp/dol of the pressure with respect to the crank angle 
in the vicinity of the point of knock by 

t = ( -- I d p 2 m ) 1 =  6 x 1 0 - 3  s, 
YP,,, da  P 

where we have assumed n = 2500 r.p.m. for the engine speed and read dp/da as one 
bar per degree crank angle from the diagram. We finally obtain 

which justifies the scalings t,/ts = 0(1/M) and tp / t s  = 0(1/M2) suggested by 
(2.1 1)-(2.13). 

2.1. Governing equations 

The balance equations for mass, momentum, energy and fuel mass fraction, written 
in Eulerian coordinates ( x , t ) ,  and the equation of state, are 

(2.14) 

where we have employed the usual symbols p, p, T, u for density, pressure 
temperature and velocity respectively. 
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Boundary conditions are prescribed for the velocity by 

dX,(t) = Up(% (2.15) 
dt u(0, t )  = 0, u ( X p ( t ) ,  t )  = 

while the initial conditions will be given later. 
We introduce non-dimensional quantities, dividing p, p, T ,  Y and a = (yp/p)i by 

their initial averages pa, pa, T,, Y,, a,. The reference time t, will be taken to be equal 
to t ,  in $ 3  and equal to t ,  in $4. In addition we introduce the non-dimensional 

X,(O) (2.16a, b, c )  
quantities 2 l u  

x*=- u*=-- , M = - ,  
X p ( 0 )  ’ M a ,  a a  t a  

(2.16d, e )  

1 t 
r * = - t  r t : = J .  (2.16f99) 

C a ’  ta 

When the non-dimensional reaction rate r* is of 0(1) the regime of (2.3) is obtained, 
as will be seen in $4.1. In  the following we shall suppress the asterisk for non- 
dimensional quantities but will indicate dimensional quantities by a prime. 

Since the total mass in the system is constant, it is convenient to replace x by the 
Lagrangian coordinate 1 P(5, t )  ds 

s, P(S3 t )  ds. 

@ = X , ( t )  0 (2.17) 

The non-dimensional equations are then 

ap au 
-+p2- = 0,  
at a+ 

au ap 
i v y - + - =  0, 

at a@ 

(2.18a) 

(2.18b) 

- ep( -Ah) r = (2 .18~)  
aT y - l a p  
pz---- Y at 

(2.18d) 

p = pT. (2.18 e )  

The boundary conditions become 

u(0, t )  = 0, u(1, t )  = U,(t). (2.19) 

For the later analysis it is convenient to introduce a modified pressure function P and 
an entropy function S by Y z l  P = p z r ,  X2P2 = T .  

Then the energy equation simplifies to 

(2.20a, b) 

(2.21) 
as 

2P2S- at = e( -Ah)r ,  
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(2.22) 

where ui and P, are quantities of order unity. 

2.2. Characteristic formulation 

In order to obtain a satisfactory resolution of the wave propagation we first 
introduce a fast-time coordinate 

1 

? = B t  (2.23) 

into (2.18) and perform a transformation to characteristic coordinates (6,q) (cf. 
Appendix A for the derivation). 

and 7, representing the paths of acoustic waves in the 
Lagrangian space, are defined by 

Lines of constant 

(2.24) 

respectively, where r = ( y+  l) /(y- 1).  
When we account for chemical reactions, the particle paths 

1+9 = const. (2.25) 

form a third set of characteristics. Along the characteristic curves, changes of the 
dependent variables must obey the compatibility relations 

-- - -Met-. ay 
aT 

(2.26 a )  

(2.26b) 

(2.26 c)  

(2.26 d )  

To complete the formulation of the problem, boundary and initial conditions have 
to be expressed in terms of characteristic coordinates. Since the boundary conditions 
are imposed on g = 0, qk = 1 and T = 0, while (2.24)-(2.26) are written in terms of 
6 , ~  and 7, we have to introduce additional unknown functions 

r c ( t ) i  ~ D ( T ) ,  ti(?) (2.27) 

which represent the top of the cylinder, the piston and the initial line in the ( t , v ) -  
plane respectively. With (2.27), (2.19) and (2.22) we have the following boundary and 

(2.28) 
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at  the top of the cylinder; 

Ntp(7L 7) = UpVf7(tp(7), 7))> ?+(tp(r), 7) = 1 (2.29 a,  b )  

a t  the piston ; and 

u(ti, 71) = U i ( $ ( t i ,  

(2.30) 

3.  Gasdynamic perturbations in an inert gas 
3.1. Two-timescale asymptotic expansion 

Here we non-dimensionalize the time by t: = tk from (2.5) using ui = max u’(x, O ) ,  
and allow for moderate rates of compression, such that the non-dimensional 
timescales are 

In addition we set r = 0 and 8 = 1 .  Inspection of the compatibility equations 
(2.26q b )  shows that it is essentially the small parameter 

t, = t, = 1, t, = M .  (3.1) 

that dominates the relation between P and u in a pressure wave. Therefore we shall 
perform a perturbation analysis expanding all unknown functions in powers of 6, 
thereby employing the method of multiple scaling to account for the different 
characteristic times of piston motion and wave propagation. We set 

(3.3) F([ ,v ;&)  = F‘o’([ ,q ,a)+SF‘1’( t ,7 ,~)+ ... , 

where F = (u, P ,  ?+), and where the slowly varying argument (T is defined by 

(T = +S((+y). (3.4) 

It may be expected that the slow piston motion will enforce a nearly homogeneous 
pressure rise, on which gasdynamic disturbances of 0(6)  are superimposed. Thus it is 
reasonable to  set 

(3 .5)  

In  addition, the principal freedom in the numbering of the characteristics is used 

P = PO(C) + 6 P y g ,  7, (T) + ... . 

to let 

A crucial difficulty arises owing to the slow mean-field compression, which is 
illustrated by figure 3 ( a ) ,  showing the path of a pressure disturbance in the 
Lagrangian space. As a consequence of the overall compression the average speed of 
sound increases and the characteristics come closer and closer together, such that a 
progressively refined resolution in time is required. This can not be provided by a 
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I'IOURE 8 .  (a) 'Lne course 01 m e  cnaraccerismcs in ~~~~grarigiari space, reveaiiiig ~iiit: I E ~ U  IUI 

progressively refined temporal resolution after considerable overall compression. ( b )  The domains 
of integration in the characteristic space : -, boundaries valid for the perturbation equations ; 
m, boundaries valid for a particular solution of the model problem. 
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linearly stretched time coordinate expanded according to (3.3). However the 
expansion 

7 = + 1 P i r ( s )  ds+S~(~)(9 ,7 ,  g) + . . . (3.7) 

together with (3.6) ensures that to leading order the slope (a@/a.r) of the Mach 
characteristics is always adjusted to Pr, the slowly varying Lagrangian speed of 
sound, and it yields the desired refined resolution. A physical interpretation of the 
ratio u/S can be obtained by substituting 11. = s/S in the integral in (3.7), 

This expression shows that u/S may be considered as the amount of mass that, to 
leading order, can be passed by an acoustic wave during the time 7.  In addition, using 
(2.23), (3.2), (3.4) and (3.7) the slow time t can be related to u by 

t = to@)  + O ( P )  ; to@) = - Pir(s) ds. (3.9) 

With these perturbation expansions we finally obtain the following hierarchy of 
characteristic equations : 

p y  + up = - 1p p p  - (0 )  = - q j  2 0 ,  

p!, 2) - Ur (1) = -1 Z(P, (1) - u, (0 )  1 7  

( 3 . 1 0 ~ )  

(3.10 b )  

2 0 )  ut 

pp +u(l) 5 = -i(PLl’ 

(3 .10~)  

Here the dot denotes the derivative with respect to g. 
These equations show the advantage of the Ansatz (3.6) and (3.7). There are no 

secular terms on the right-hand side of (3 .10~)  that contain the leading-order 
coordinate functions. Such terms had caused divergences in @(l),#l) in the work of 
G. H. Schneider (1979). The boundary functions y,,<, are also expanded in the 

(3.11) 

form 

with g = u(6, re(<)) and u = u(&,(y), y), respectively. Equations (3.6) and (3.7) ensure 
that the leading-order terms yLo), 6;) become 

yl0’(E, 4 = <, E;)(y, u) = y + 2 ,  (3.12) 

and thus do not depend on u. By means of the expansions (3.11) one may transform 
the boundary conditions to the leading-order boundaries ylo), 6:) and thus obtain the 
domain of integration in the characteristic space, which is shown in figure 3 ( b ) .  The 
boundaries, valid for the perturbation equations, are fixed by means of (3.12), 
whereas the actual boundaries y = yc(E) and 6 = tP(y),  along which the relations 
@ = 0 and @ = 1 hold respectively, in general depend on the particular solutions. 
Therefore they cannot be calculated to a given order of approximation, before the 
hierarchy of equations of direction is solved up to the same order. Furthermore it is 
not possible to fix a scale of the 7-axis in the characteristic space a priori, since the 
resolution of the fast-time processes is automatically adjusted to the average 

I r,(k) = ylo’(L 4 + ~y:’(S, g) + * * *  , 

6JS) = ~;’ (y ,a)+Sf[~)(y,a)+. . .  3 
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frequency of the wave reflections. The latter is determined by the bulk compression 
and therefore depends on the particular choice of the piston motion in any special 
solution of the problem. 

It is especially important that ?Lo) and 6;) do not depend on (T, since in the later 
analysis we shall have to solve differential equations, which determine the derivatives 
aF@)([, 7,  u)/&, by means of integrations with respect to CT a t  constant ( 5 , ~ ) .  The 
non-dependence of the domain of integration in the  space on IT then ensures 
that these integrations can be performed for all ( 5 , ~ )  within this domain and without 
restrictions on u. 

The transformation of the boundary conditions yields 

U‘O’(E, E ,  4 = 0, 

U ‘ l ’ ( 5 ,  E ,  4 = - u:p’g, E ,  4 Ihl)(E, 4, 
V ( E >  5 > 4  = $rP’(E, 4 

u(O’(7+2,r,  4 = U P ( t O ( 4 ) ,  

U ( l )  (7 + 2 > 7 > 4 = - up’ (7 + 2 > 7 > 4 62) (7 > 4 , 
$‘1’(7+2,7,CT) = -$Ef’(7,IT). 

a t  the top of the cylinder, and a t  the piston surface it yields 

The initial conditions become 

a(o)(-7>7>O) = U i ( - T ) >  

P(l’( - T I T >  0) = p,( - 7), 

PO(0) = 1, 

where we used ~,,(  - 7 , ~ )  = -71. 

3.2.  First-order solutions and leading-order secular equations 

Equations of compatibility along wave paths 

( 3 . 1 3 ~ )  

(3.13b) 

( 3 . 1 3 ~ )  

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

( 3 . 1 5 ~ )  

(3.15b)  

( 3 . 1 5 ~ )  

Equation ( 3 . 1 0 ~ )  may be integrated along the characteristics to yield the 

( 3 . 1 6 ~ )  

(3.16 b )  

general solutions 

p(1)(53 I ,  4 = F ( 5 , d  + G(7, 4, 
U‘O’(L 7,  a) = -tcr- 7 )  &(a) -F(5,4 + G(7, 4. 

The boundary condition ( 3 . 1 3 ~ )  gives 

( 3 . 1 7 ~ )  

(3.17 b) 

whereas ( 3 . 1 4 ~ )  then yields a recursion relation for F 

F(7 ,  4 = F(7 + 2 , d  + (Up(to(IT)) +Po@)) .  (3.18) 

Using ( 3 . 1 6 ~ )  for P(l) ,  this relation can be written as 

P 0 ( ~ ) A ~ + 6 ( P ‘ l ) ( E + 2 , 7 + 2 ,  IT)-P(”(( , I ,  I T ) )  = - U D ( t o ( r ) ) A u ,  (3 .19)  

where A g  = 1 ~ ( E + 2 , 7 + 2 , 6 ) - 4 6 , 7 , 6 )  = 26 is the difference in IT between (<+a, 
7 + 2 )  and ( c , ~ )  (cf. figure 9). 
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The left-hand side of (3.19) is the net change of P to O(S), and it is related to the 
mean compression due to the piston motion, which is represented by the right-hand 
side. In  order to obtain a uniformly valid approximation, the successive expansion 
functions F(i ) ,  F(i+l) are required to be of the same order of magnitude. Since 8 in (3.4) 
is arbitrary, a can be fixed independent of 6 and 7.  Thus the pressure rise in (3.19) 
is to  be distributed between Po A a  and the difference P(l)(C+ 2 , ~  + 2,  a)  - P(l)( t ,  7, a)  
such that P( l )  remains bounded for all allowed (6 ,q) .  Applying (3.19) n times, one 
obtains the first-order pressure difference 

~ ( 1 ) ( 6 + 2 n , 7 + 2 n ,  a)-P1)(6, 7,  a)  = -2n[~,(t,(a))+P,(a)1. (3.20) 

Since n may be arbitrarily large, P(l )  is bounded everywhere only if the right-hand 
side of (3.20) vanishes identically. This requirement represents a secular equation for 
the slow-time variation of the pressure function Po(a) ,  

PO(4 = - UJto fa ) ) ,  (3.21) 

where to (a)  is taken from (3.9). Thus (3.18) leads to 

F ( t , a )  = m + % a ) ,  (3.22) 

indicating that F must have period two with respect to 6. Since P = Ti = p%, with 
the aid of (3.9) and with Up = dX,/dt one finally obtains 

(pX;)(O' = 1 (3.23) 

from (3.21). Since in our closed piston-cylinder system X ,  is proportional to the 
specific volume, this equation shows that the accumulation of the weak pressure 
waves leads to the bulk pressure rise given by the law of adiabatic compression of an 
inert gas. This result was already obtained by G. H. Schneider (1979). 

Equations of direction 

Equations (3 .10~)  may formally be integrated. However, in the boundary 
conditions (3.13) and (3.14), the boundary functions vL1)(7, a) ,  $)(t, a)  appear, which 
are still undetermined. Thus a t  this stage it is not possible to calculate the integration 
functions v ,  ,u appearing in the general solutions 

( 3 . 2 4 ~ )  

(3.24 b )  

With the aid of (3.17b), +(l) and 7(l)  become 
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(3.26a) 
r 

q p g ,  a) = -- [m, 4 +P(@l + [p(E, (7) + V ( 5 > 4 1 ,  

&y(q,  a) = -- rF(? 4 +P(a)l- [p(q + 2 2 4  + v(q,  4 3 ,  

PO(4 

r 
PO(4 

(3.26 b) 

where we used ( 3 . 1 3 ~ )  and (3.14c), and where 

P( a) = !ill F(  <, a) d<. (3.27) 

Anticipating the secular equation (3.39) for F and using (3.16b) and (3.22), it can 
be shown that the expression f[qL1)([, cr) + c:)([, a)] must have period two in 6, as all 
other terms in that equation. With (3.26) this results in 

Ap(E,a) =p(E+2,a)-pu(E,a) =,4&+4,a) -p( [+2, (~)  = ..., 

2 

such that the functional form of p is 

The K-function is defined as 
co 

K(g)  = C H[[-(2i+ I)]. 
i=o 

Here H is the Heaviside step function 

(3.29) 

(3.30) 

Furthermore the requirement ~ ( l )  = O($.,) = 0 ( 1 )  must hold, and therefore 

p*(E*, 4 +K(E) Ap(E*, a) + v ( r ,  a) = O(1) .  (3.31) 

Since [* and q vary independently, the second and third terms in general cannot sum 
up to O(1) and one has to require 

and 

Ap* = 0 or p(5, a) = p*(c*, a) = O(1) (3.32) 

v(q, a) = v*(q, a) = O(1) .  (3.33) 

This ensures that both $(l) and r(l) remain 0 ( 1 ) ,  and that divergences in $(’), 7(2) 

are avoided, as can be seen in a second-order expansion of the equations of 
direction. 

A special result obtained from (3.26) is 

-1  f[rll’(E, 4 + E:”(E> @I = ___ [w& a) +P(a)] ,  (3.34) 
PO(4 

which by means of (3.39) shows that the functions p* and v* do not affect the 
development of the wave profile function F .  Furthermore they merely correspond to 
O(M2)-corrections to the slow time t = M r .  Since we are interested in O(1)-changes of 
the evolution of the ignition process we will not examine additional constraints on 
p*, v* here. 
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3.3. Second-order solutions and secular equations for the Jirst-order functions 
Equations of compatibility along wave path 

solutions for PC2) and u(l), obtained from integrations of (3.10b), are 
Some details of the following derivations can be found in Appendix B. The general 

p(2)(t2 7 , 4  = $ O ( d  ($%-? 7) -3 + $ O ( t ,  7) [F,(t, 4 - a 7 3  @I 

U ( l ) ( t >  7 , d  = Po(..) - $lo(& 7)  [Eb(5,4 +FA71 4 1  
--F,(t, a)+F(’)(C, cr)+G(2)(1;1, r), ( 3 . 3 5 ~ )  

+F,(t, v ) - F ( ~ ) ( ~ ,  v ) + G ‘ ~ ’ ( ~ ,  c). (3.35b) 

The same steps that led to the recursion formula for P give a similar relation for 

(3.36) 
F2).  The requirement 

for all allowed (t, 7,  a) results in a secular equation for P(l) and F(5, CT). With the 

P(2) = O(P(1’) = O(1) 

definitions 
( 3 . 3 7 ~ )  

,ug)(7>4 = - u ~ ) ( 7 + 2 , 7 , a ) 5 ~ ) ( 7 , ~ ) ,  (3.37b) 

one may write the secular equation for P(l) in the form 

P p ( t J ,  a) = +(ul.l’(t, c r )+Up(q ,  ~ ) ) - + ( u g ) ( t , ~ ) + u g ) ( 7 ,  v)). (3.38) 

The right-hand side, containing ug),uL1), is a correction to the first-order 
approximation, which prescribed the velocities do) = 0 and do) = U p  at = 0 and 
$o = 1 instead of $ = 0 and $ = 1. 

It is seen that the first-order velocities a t  the boundaries determine the slow- 
timescale variation of P(l) in the same way as the piston motion caused the mean- 
field pressure changes by means of (3.21). The secular equation for F(5,  CT) is obtained 
from (3.38), collecting all terms on the right-hand side that only depend on [ and v. 
With the aid of (3.37), (3.16) and (3.17) one finds 

C ( 5 ,  4 = - u y ( t +  2 ,  t ,  4 B(sl.l’(E, 4 + 5:’(5,4). 

a t>  4 = -(iP0(4 +qt> 4) (F(t7 4 +m). 

(3.39) 

Additional use of (3.34) yields a closed-form equation for F,(E, (T), 

(3.40) 

The initial conditions for F ( t ,  B )  follow from those for P(l)  and do),  (3.15), and from 
the general solutions, (3.16) and (3.17), 

r 
PO(4 

Once solutions to (3.40) and (3.41) are known, the first-order approximation is 
completed except for the coordinate integration functions p*,  v*. 

3.4. Wave deformation and shock formation time 
The first-order pressure function P( l )  is composed of two contributions, each 
depending on either (6, a) or (7, a) as can be seen from (3.16) and (3.17). This may be 
interpreted as the superposition of two wave trains travelling in opposite directions 



212 R. Klein and N .  Peters 

and having the same profile function F(6,a) .  The secular equation (3.40) for F 
describes the deformation of the waves with increasing time. Note, that with this 
relation the nonlinear structure of the system is retained. I n  particular, the 
development of multivalued regions in the (6, a)-plane indicates shock formation. 

Equation (3.40) can be written in characteristic form as 

r P ,  (E)c = F,+A[F;a]Fg = , p ( F + P ) .  
0 

(3.42) 

Here c denotes the characteristics of (3.42), whose directions in the ( f [ ,  a)-space are 
given by r 

PO(4 
(E)c = A [ F ; a ]  = --(F+P) (3.43) 

Notice that (3.42) is an integro-differential equation and A ( F  ;a)  is a functional 
depending on all values of F in - 1 < f [  < 1 for constant a. In  terms of characteristic 
coordinates of (3.42), namely 

multivalued regions in the (6, a)-space are indicated by 

( c ,  4 = ( c ( 6 , 4 , 4 ,  (3.44) 

(3.45) 

since in that case two characteristics labelled by c and c + dc cross each other. If 
b(c,  a)  is known (3.45) can be considered as an implicit relation ash = aSh(c), and the 
minimum of this function determines the slow-scale shock formation time tsh up to 
first order via 

tSh = - I" Por@) ds+ O(M6). (3.46) 

Differentiation of (3.42) and (3.43) with respect to c gives 

Y--l 

a i3F -(b) = --- 
aa P, ac 

(3.47) 

(3.48) 

where the derivatives refer to ( c ,  a)  as the set of independent variables. First, (3.47) 
is solved by 

P:12(a) = Fgo(c)PC12(a), (3.49) 

and then (3.48) is integrated to give 

b(c,  a)  = 1 -rFg,(c) [P;/2-1(s) ds. 

Thus the relation for ash is 

(3.50) 

(3.51) 

if there is a t  least a small interval where Fg(6,0) > 0. 
On the other hand, those characteristics that have Fgo(c) < 0 spread out in time, as 

is suggested by the fact that  b(c ,  a)  = a&/ac then grows monotonically with a. An 
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f 

FIGURE 4. The steepening of an initially smooth wave and shock formation, represented by the 
temperature at  the piston surface. 

increasing value of b means that an interval d[(a), which a t  ‘time’ IT covers the 
characteristics coming from an initial interval dc, broadens with time. In  figure 4 we 
have plotted the temperature a t  the piston surface versus time, for the case of a 
sinusoidal initial disturbance. (This is convenient, since T = P2 follows from (2.20b) 
if S = 1.) The steepening of the wave front up to  shock formation and the 
corresponding flattening of the wave tails is obvious. These effects are both related 
to the properties of b(c,v) mentioned above. For more details concerning the 
numerical evaluations, see $5. 

3.5. Special solutions for an initially undisturbed gas 

For initial conditions with the gas a t  rest and with an impulsive start of the piston 
motion, the initial conditions (3.41) for F reduce to 

F(6,O) = gup(o) ( -  1 < [ < 1) .  (3.52) 

Separation of variables according to 

together with (3.52) leads to the solution 

(3.54) 

For the case of constant piston speed, say Up = - 1, the exact solution is known. 
There is one shock reflected repeatedly between the piston and the top of the cylinder 
separating two homogeneous regions, one region with constant velocity u = U p  and 
the other with the gas a t  rest. The pressure rise across the shocks is given by 
Rankine-Hugoniot’s law, which to first order in the shock strength can be written as 
(Seifert 1962 ; Whitham 1974) 

(3.55) 
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Hg-7)- 

FIGURE 5. Domains of constant pressure and velocity when shocks are initiated by an impulsive 
start of the piston motion and when the piston speed is constant. 

0.21 0.43 0.64 0.86 
1 

FIGURE 6. Decay of the shock strength after multiple reflections for a periodic piston motion. 

Evaluation of (3.21) for Po and of (3.54) yield 

PJU) = 1 + u, (3.56) 

and m, 4 = -B[E--2K(C)I (5 > - 1) .  (3.57) 

Replacing u by i S ( [ + q ) ,  it is seen how the change of P(l) between the passage of two 
shocks compensates the slow change of Po. The solution, up to and including first 
order, for P is 

P( t?  9 )  = 1 +,Ww Y-1 + K ( r ) l +  W2)> (3.58) 

and to leading order for u we have 

U ( t > 9 )  = - F ( 5 )  -K(9)1 +w. (3.59) 

As shown in figure 5 the region 5 - 2  < 9 < E in the ((,q)-plane is divided into 
triangles, each corresponding to a pair [ K ( < ) ,  K ( 9 ) ] ,  in which there are constant 
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lk- 
FIQURE 7 .  Characteristics crossing the path of the shock. 

$- 
FIGURE 8. Multivalued regions in the Lagrangian space indicating the presence of shocks ; 

._.-._ , bounding characteristics of the multivated regions ; ---- , shock lines. 

values of pressure and velocity. Where K(<)  --K(q) = 1 we have u = - 1 + O(S), while 
where K ( [ ) - K ( q )  = 0 it is u = U(6). The pressure function changes through 

[PI = M-+O(M2)  Y--l = +M--[U]+O(M2) Y--l 
2 

a t  each discontinuity, as required above. 
As a second example we have considered a periodic piston motion given by 

U J t )  = -;. cos(xt) .  (3.60) 
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Figure 6 shows the pressure p versus time, as it comes out of an evaluation of (3.54). 
It is seen that the shock strength continuously decreases. This is a consequence of the 
growth of the integral in the denominator in (3.54). As is depicted in figure 7, this 
decay of the wave amplitudes can be explained physically as the result of expansion 
waves starting from the piston, when it is decelerated, overtaking the shock 
and weakening it. More generally, this effect is expressed in (3.38), where the first- 
order velocity corrections @ ) ,  up) a t  the boundaries enter into the secular equation 
for P(l).  

Figure 8 qualitatively shows the multivalued regions in the Lagrangian space 
obtained by formal evaluations of the solutions for $(') and ~ ( l ) .  These regions have 
to be replaced by shocks in order to construct physically meaningful solutions. 
Setting ($Lsh, T , ~ )  = ;($++ $-, T+ + T - ) ,  where $&, rf denote the first-order approxi- 
mations to $ and r at the boundaries of the multivalued regions, we are in 
agreement with the bisector rule for weak shock propagation described by Kluwick 
(1981) and W. Schneider (1978). 

4. Reactive gas 
In  this section the reference time t: is identified with the ignition delay time t i ,  such 

that t, = 1. Before entering into the details of the analysis, an a priori estimate of the 
effects of the disturbances and of the mean-field compression on the reaction rate 
will be performed. Expanding the right-hand side of ( 2 . 1 8 ~ )  with respect to S one 
obtains 

( -Ah)  r = lYco) exp [: (1 -A)] exp [:% + 0 (:)I. 
Y 

Owing to the factor of l/e in the first exponential, an O(1) deviation of the mean-field 
temperature T(O) above unity immediately leads to an exponentially large reaction 
rate. In  this case there is no longer an induction phase precursing ignition, but the 
whole process is driven by the compression. We therefore require that all the bulk 
quantities may only change about O ( E )  on the ignition timescale. This is equivalent 
to setting 

and thus treating the deviations of bulk quantities from their initial values as 
perturbations. From (4.2) we conclude U,(t) = O(e)  in this regime, which confirms 
(2.13). On the other hand, it is seen from the second exponential in (4.1) that 
the gasdynamic disturbances enforce O( 1 )-changes of the reaction rate only if 
6 = &lf(y-  1 )  = O ( E ) ,  as was anticipated in $2 as well. 

X,(t)  = l - € W ( t ) ,  p(t )  = l+EW(t)+ ..., (4.2) 

4.1. Ignition under homogeneous compression 
Based on (4.2) one may estimate u = O(U,) = O ( E ) ,  which implies p = p ( t )  by means 
of (2 .18b) .  Using p = p T ,  the equations for temperature and fuel mass fraction can 
then be transformed to 

T,-e(y-l)TTd = ey(-Ah)r+O(E2), yt = -w.  (4.3a, b)  

The dependent variables T ,  Y are expanded in powers of E as 

T = 1 + ET(') + 0(2),\ 

Y = l + O ( E ) .  1 (4.4) 
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Insertion into the energy equation (4.3a) yields 

Ti') - (y  - 1) 8(t) = y( -Ah)  r(O) = exp (P)) (4.5) 

(cf. (4.1) with 6 = B and T(O) = Y(O) = 1). 
The solution is subject to the initial condition 

TyO) = 0. (4.6) 
Equation (4.5) is solved explicitly by means of the transformation $(t) = 

exp(-T'l)), with $ ( O )  = 1, and amounts to 

T(l)(t) = ( y - l ) v ( t ) - h ( l - r  0 exp((y-l)v(s))ds). (4.7) 

For v = 0 we obtain Frank-Kamenetskii's result 

T(l)(t) = -ln(l-t) .  (4.8) 

Since we have scaled the time with ti from ( 2 . 2 ) ,  it is seen that the ignition delay time 
ti  indeed represents the time to ignition under constant density conditions. 

Requiring Tfl) + co the time to ignition t I ,  for slow compression is obtained from 
the condition 

exp((y-l)v(s))ds = 1. (4.9) J:'" 
This equation shows how a compression with v(s) > 0 accelerates the ignition process, 
while an expansion with v(s) < 0 slows it down. 

4.2. Gasdynamic-chemical interactions 

In addition to the mean-field compression, we now allow for gasdynamic 
perturbations, and introduce the distinguished limit 

s-to. (4.10) 

In the characteristic formulation, first-order variations of the entropy function and 
fuel mass fraction owing to the chemical reactions are prescribed by the compatibility 
relations along particle paths $ = const. It is convenient to introduce the new set of 

6 
- = 0 = O(l),  
6 

coordinates 

for S and Y .  Solutions of the form 

s = 1 + 
Y = 1 + 0 ( 6 ) ,  

#, cq + O(&"),'l 

f 

(4.11) 

(4.12) 

are then expected. As in $4.1 it is not necessary to examine higher orders of Y if one 
is interested in thermal runaway only. Thus we consider an expansion of the energy 
equation (2.26c), q) = 0 S(1) = p)($ 0 ,  g) (4.13) 

(4.14) 

(A detailed expansion of the operator a@ along $ = const. in terms of derivatives 
with respect to ( $ o ,  4, IT) is given in Appendix C.) 
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With r(O) from (4.5), and by means of an expansion of the relation T = S2P2, r(O) is 
expressed in terms of X(l) ,  P(l) as 

( - A h ) d O )  = I exp[2w(S(l) +P('))].  (4.15) 
Y 

Integration of (4.14) along k,, = const., from $ to $+A$,  yields 

(4.16) 

Here A S 2 )  and A@(')S&) are bounded for arbitrary A$, such that the other two terms 
must balance each other. This gives the secular equation 

(4.17) 

where we set A$ = 2, since r(O) has period 2 in $ via the periodicity of P(') (cf. (3 .16a) ,  
(3 .17~)  and ( 3 . 2 2 ) ) .  

Since the time to ignition will be 0(1), while the characteristic time of the piston 
motion is 0(1/e) as in $4.1, the pressure function P is constant to leading order. Thus 
an  appropriate expansion of P is 

P =  1+8P([ ,q,a)+.* . .  (4.18) 

For 7 this means, according to (3.7),  

7 = ;g + 7) + 87(1)(6,q, a) + . . . . (4.19) 

Employing the notation of (4.2) for the piston motion, the boundary condition for u 
a t  t+b = 1, (2.29a), changes into 

U(Cp(7L 7)  = - WM7(6J7)> 711. (4.20) 

Thus in analogy with (3 .13a) ,  (3.146) and using (3 .373) ,  one has 

1 (4.21) 

With Po = 1, S = 1 + 8X(l), T = r(O)(S('), P(')) $. O(S), the compatibility relations along 

U'O'(7 + 2 , 7 ,  a) = 0, 

u'l '(7+2,7, a) = U p ( 7 ,  a)-tj(to(a)).j 

wave paths to first and second order change to 

p p  +UP' = 0 

(4.22) 

By the method described in $ 3  we finally obtain the following secular equation: 

Pb"(t, q,a) = ;[4')([> 4 + u % L  a)] -+lu;)([, a) + U r ' ( 7 ,  a)] 

+?@,(a)) +- 
The paths of integration G,,G, are shown in figure 9. 
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6, 
Qost 

FIGURE 9. The paths of integration C,, C, 

The second term of the integrand results from the deviation of S from unity on the 
left-hand side of (2.26), while the integral over the source term ( - A h )  r(O) represents 
an accumulation of second-order pressure waves along the Mach characteristics. 
These waves are initiated by thermal expansion due to the chemical heat release and, 
since r(O) = r(O)(X(l), P), there is an obvious feedback of the pressure perturbations 
via these chemically induced second-order wavelets. The process of self-heating 
within a particle is described by the secular equation (4.17), where the source term 
is integrated along a particle path not counting the deviation 8qV1) + O(S2). 

From (4.23) one obtains an equation for the profile function 

Fg(t,  4 = q t ,  4 (W, 4 + I ” ( 4 )  + + W o ( g ) )  

(4.24) 

Equations (4.17) and (4.24) are a system of equations determining F(6, n) and 
 AS(^)($^, cr), since r(O) can be expressed in terms of F and via (4.5) (replacing T(I)  

by UP)), an expansion of (2.20b) and the result (3.17b) for P). 
Owing to the coupling of S(l) and P(l) via the integrals in (4.17) and (4.24), an 

explicit solution is not available. Thus we have performed numerical integrations, 
which will now be discussed. 

5. Numerical evaluations 
5.1. Finite-diflerence approximations 

In order to evaluate the system of equations (4.17), (4.24), (3.17b) for S1) and F ,  one 
has to employ a numerical method that yields non-oscillating approximations near 
discontinuities of F ,  because effects of numerical oscillations on the calculated time 
to ignition could hardly be distinguished from those of the desired perturbations. We 
use an explicit two-step upwind-differencing scheme, proposed by van Leer (1984) 
and Munz (1985) to approximate solutions to the nonlinear equation for F .  The 
secular equation (4.17) for S(l) is integrated with the Eulerian predictor-corrector 
method. The integrals are evaluated by means of the trapezoidal rule. The coupling 
of F and S(l) is taken into account by simultaneous solution of the equations. The 

8 FLM 107 
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FIGURE 10. Non-oscillating approximation to F(5,  CT) a short time before ignition on a mesh 
with step size A[ = &. 

scheme of van Leer and Munz is based on a first-order scheme designed to 
approximate weak solutions of nonlinear scalar conservation laws of the form 

F,+G, = 0, (5.1) 

where G may be considered as the flux of F in the (<, u)-space, when (T is associated 
with the time. 

The idea is to construct a numerical flux g(v ,w)  to reproduce the conservation 
properties of the original equation by setting 

where FF is an approximation to F(iA<,nAv), h = AuIAE, and A t ,  ACT are the 
discretization parameters. The numerical flux is designed such that it is consistent 
with G(F) ,  i.e. 

and that the total variation TV" = Z,IFF+l-FFl diminishes with increasing (T. This 
ensures that unphysical oscillations are avoided, and is called the total variation 
diminishing (TVD) property. Second-order accuracy is obtained at least in regions of 
smooth F(6,  a )  by introduction of preliminary linear approximations to F(& (T) 
within the interval [(i-a)A& (i+a)Ac]  and by performing a predictor step to 
estimate the fluxes in u = (n  + t )  Au. 

With a suitable choice of the slopes of the preliminary linear structures next to 
steep gradients this procedure ensures the TVD-property, such that a sharp 
resolution of discontinuities is obtained corresponding to the second-order accuracy 
in smooth regions, but without oscillations in the vicinity. 

The secular equation (4.24) for F can be transformed to conservation form 
according to (5.1) when the flux CT is defined by 

(5.4) 



Efjects of weak pressure waves during thermal explosion induction 22 1 

Introduction of a source term in the difference scheme is straightforward, although 
one has to bias the evaluations of the right-hand side with the direction of the 
characteristics in the (E,a)-space, as proposed by Roe (1986). Figure 10 shows a 
typical profile of an approximation to F(6,  a) a short time before ignition. It is seen 
that oscillations are avoided. 

An additional modification of the difference scheme is necessary in the vicinity of 
steep gradients, which represent discontinuities in the approximation. The numerical 
scheme is designed to conserve the quantity F across discontinuities, but here F is 
related to the pressure p by means of (3.5), (3.17b) and (2.20), and thus it is not 
conserved. However, the total energy of the system is conserved and a tedious 
calculation, which accounts for the excess energy formally contained in multivalued 
regions of the asymptotic solution, allows us to derive the velocity of discontinuities 
of F in the (5, a)-space as a functional of F and S1). On the other hand, this velocity 
can be related to a production of F within the discontinuity. Therefore one can add a 
source or sink wherever steep gradients in Fr  occur, such that the correct velocities 
of discontinuities are obtained. However, numerical experiments have shown that 
the times to ignition depend only weakly on this effect. 

5.2. Discussion 
In this section we shall discuss the influences of the temperature sensitivity of the 
reaction rate, the pressure-wave amplitudes, the frequency of the pressure-wave 
reflections and of the rate of bulk compression. These four aspects are quantified by 
the non-dimensional activation energy E = l / e  and by three ratios of characteristic 
times tL/tk, t;/tL and tilt;. Let us recall that tL/t; measures the initial wave amplitude, 
while tilt; is roughly the number of wave reflections that can occur before ignition. 
Since the reference time t i  obeys t i  = ti in this section, it follows that tilt: = 1/M 
from ( 2 . 1 6 ~ ) .  The third ratio tilt; quantifies the rate of overall compression. While 
E ,  ti, t i  and t i  are already provided by (2.2), (2.4) and (2.6), the definition of tk (i.e. 
of uk in (2.5)) used in this section will follow from (5.5). 

In addition to these parameters one may prescribe the initial wave profile and the 
course of the overall compression by specifying F(5, 0) and the piston displacement 
v( t )  defined in (4.2), respectively. The results to be presented below are obtained by 
taking either N-waves, 

1 t; 
F(5,O)  = -,“-2K(5)1, (5 .5)  

F(5,O) = Fsin ~in[n(5-2K(5))1, (5-6) 

or sinusoidal waves, 2 t, 

as initial wave profiles. Equation (5.5) defines tk to be the characteristic time of the 
gas motion based on the maximum speed of a linear initial disturbance (cf. (3.16b) 
and (2.5)). When the results for different profiles of the initial waves are compared, it 
is convenient to choose the amplitudes such that the average reaction rates 

(5.7) 

coincide for a = 0 and for all profile functions F ( [ ,  0) that are compared. This defines 
t i  for other than the N-wave profiles of (5.5). Where a mean-field compression is 
taken into account, we have assumed Ij = const. = t;/t; throughout. 

In our calculations we have compared the times to ignition, t;,* and t i , v  under 
perturbed and under homogeneous conditions, respectively, and in general observe 

a-2 
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FIGURE 11.  The acceleration of the thermal runaway due to gasdynamic perturbations. 

10 20 30 40 50 
E 

FIGURE 12. Activation energy and relative time to ignition. U ,  = 0, = #, t i / t :  = 16: - x -, 
initially N-shaped waves ; - - - ,  initially sinusoidal waves. 

a shortening of the times to ignition due to the perturbations. This acceleration is a 
consequence of the nonlinearity of the reaction-rate expression, which is preserved 
even in the asymptotic expansion (cf. (4.15)). The nonlinearity results in average 
reaction rates along the curves of integration C,, C, (cf. (4.23)) that are significantly 
larger than the reaction rates evaluated with the average temperatures. The overall 
effect is schematically illustrated in figure 11, where it is seen how in the perturbed 
flow the average temperature deviates from that of the homogeneous flow, thereby 
shortening the time to ignition. 

In  order to isolate the influence of the pressure waves from that of the mean-field 
compression, we first set v = 0 and discuss the ratio t ; ,J t i .  In figure 12 we show the 
effect of a varying activation energy E with t i l t ;  = 1/M and t i l t ;  fixed, i.e. for a given 
gasdynamic situation. The progressive shortening of the time to ignition with 
increasing E is due to the increase of w = EM in the exponential in (4.15) which, for 
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FIGURE 13. Influence of the initial wave amplitude, represented by tL/tL on the relative time to 
ignition. U ,  = 0, t i l t :  = 16 : ----, E = 20; -, E = 30; - x -, initially N-shaped waves; -0 -, 
initially sinusoidal waves. 
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a given amplitude of the temperature perturbations, strengthens the influence of the 
nonlinearity. 

In order to obtain the results of figure 13 we have fixed E and tilt:, and varied the 
pressure-wave amplitudes, represented by tL/t;. In addition to the general effect of 
the perturbations discussed above, a considerable influence of the initial wave profile 
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FIGURE 15. (a) Absolute time to ignition measured in units of the dimensional time to ignition 
under constant density ti for varying rates of compression : - 0 -, homogeneous compression ; 

( b )  Comparison of the time to ignition t i , ,  under perturbed conditions, and ti," under homogeneous 
conditions, for varying rates of compression. 

- x -, initially N-shaped waves, - 0 -, initially sinusoidal waves ; ---- , E = 30, -, E = 50. 

is observed. The initially smooth sinusoidal waves lead to a stronger acceleration of 
the process than the N-waves. This effect can be explained with the aid of figure 7 ,  
showing the path of a shock wave in the Lagrangian space, and the characteristics 
that meet the shock from ahead and from behind. In  the present first-order 
approximation the information carried by the characteristics that cross a shock 
merely determines its local direction but has no more influence in the following 
evolution. Owing to its nonlinearity the reaction rate is more sensitive to the related 
cutoff of information a t  higher temperatures than to that a t  low-temperature states. 
The result is a lowering of the average reaction rates compared with a system without 
discontinuities, in which all information is retained. Thus as long as the sine waves 
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have not yet formed shocks, they provide larger average reaction rates and hence a 
stronger acceleration of the process. 

The results of a variation of l / M  = tilt; with fixed E and tb/t; are shown in 
figure 14. Keeping t;/tL = const. we again preserve the gasdynamic situation. The 
shortening of the time to ignition decreases with a growing number of wave 
reflections prior to ignition, which is O(t;/tL). This may be explained by the 
weakening of the shock waves after multiple reflections, as already discussed in $3. 
Accordingly, for the sinusoidal waves this effect arises only if there is enough time for 
the waves to steepen up to weak shocks. This explains the course of the lower curve 
in figure 14. 

The influence of an O(e2)-mean-field compression is shown in figure 15 (a, b) .  While 
figure 15(a) shows the ratio t i ,p / t i ,  measuring the absolute time to ignition in 
units of the ignition delay time t i ,  figure 15(b)  gives the ratio t;,Jt;,,, comparing the 
times to ignition under perturbed and unperturbed conditions, but both with an 
overall compression. The absolute shortening of the time to ignition in figure 15(a) 
is of course expected, whereas it is seen in figure 15(b )  that the overall compression 
has only a weak influence on the excess effect of the pressure waves. 

6. Conclusions 
A perturbation method combining the analytical method of characteristics with 

multiple timescaling is developed for the classical piston-cylinder problem, including 
a slow mean-field compression and acoustic perturbations. The chemically inert case 
is considered, as well as that of an explosive mixture. The interaction of the explosive 
chemical reaction with multiple reflected pressure waves or weak shocks is described, 
in a regime where the amplitude of the gasdynamical disturbances suffices to enhance 
the reaction rate by an amount of order unity. 

To leading order a secular equation is derived which shows the slow mean pressure 
change due to the accumulation of many reflected waves. 

The corresponding first-order equations reveal two important effects : although the 
principal step in the analysis is a linearization of the gasdynamic equations around 
a slowly varying mean field, the multiple timescaling allows one to describe slow 
deformations of the pressure wave profiles. Thus the method is capable of describing 
weak shock formation, when smooth initial conditions are prescribed. 

The second effect concerns the thermal runaway of the chemical reaction. The 
method is extended to the problem of chemical-acoustic interactions introducing a 
distinguished limit for small Mach numbers and large activation energies. It is shown 
how the accumulation of second-order pressure perturbations, caused by thermal 
expansions of the reacting gas, leads to an additional increase of the first-order 
pressure. The latter in turn enters into the reaction-rate expression, causing 
enhanced thermal expansions and thus closing a cycle of interactions. As a result one 
obtains a considerable shortening of the time to ignition, as compared to the case of 
a slow homogeneous compression. 

This acceleration of the induction process may be important for the problem of 
engine knock, since it enlarges the probability of self-ignition within the end gas 
before the arrival of the flame. 

During the development of this work the authors enjoyed helpful discussions with 
Professor W. Schneider (Vienna) as well as with Professor D. R. Kassoy (Boulder, 
Colorado) and Professor J. D. Buckmaster (Urbana Champain, Illinois). 
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Appendix A. Transformation to characteristic form 
We define directional time derivatives along a line c in the  plane by 

a a 
(;)c = ,+Uc@’ 

u, = g) . 
c 

Now we search for linear combinations of ( 2 . 1 ~  in which only one type of directional 
derivative appears. This will lead to one set of equations for the slopes uc of the 
characteristic lines and a second set of compatibility relations giving constraints for 
changes of the dependent variables along these lines. 

A general linear combination of (2.18), with time coordinate r = t / M  instead of 
t ,  is 

= [A,(-Ah)-A,]Mer. (A 3) 

Two equations of the desired type follows from choosing A, = A, = 0, since (2.18c, d )  
already contain only derivatives along lines $ = const. Thus these two equations can 
be retained. We obtain two more equations by requiring the form (A 1 ) :  

A, 1 A,y-lT 1 A, T2 1 - -Y- = -. -- 
A2T A, Y P uc’ A, P2 u, 

Since aT/a$, aY/a$ do not appear in (A 3) the coefficients of aTla7, aY/ar have to 
vanish, 

(A 5a, 6 )  - =-E A, = o .  
A, T 2 ’  

From (A 4) and (A 5a)  we have 

or 

and again from (A 4) 

This is the velocity of acoustic disturbances in the Lagrangian space. 
The choice 

A, = y T ,  A , = O  (A 8) 

P YP A -- results in 2 - T;’ 
and by means of (A 3) 



Effects of weak pressure waues during thermal explosion induction 227 

With the definition (A 1 )  we may write 

Replacing T by S2P2 according to (2.20b), the final result is 

Here we have introduced 5 , ~  as new coordinates on the set of characteristic lines. 
Equation (A 7) prescribes the directions of lines of constant 5 and q ; thus we have 

where 

Appendix B. Compatibility along wave path to second order, and secular 
equations to first order 

rewrite the right-hand side of (3.106) as 
With respect to the leading- and first order-solutions (3.5), (3.7) and (3.16), we 

(B 1 )  1 -z (Pp+up)  1 = +$$oPo(a)-Fv(~, a), 

-$(Pb"-u?') = -$$,P,(a)-E",([, a). 

P'Z) + u(l) = L p  2 0 ?g- 2$0C(7> a) + 2G'2'(r, 4, 
P(2)-- , (1)  = -+Po(1-$;)-2(l-$,)Fv(~, a)+2F'2'([,a), 

Then integration of (3.10b) along 7 = const. and 5 = const. yields the general 
solutions 

] (B2)  

respectively . 
With the aid of (B 2) we can eliminate either PCz) or u(l) to obtain (3.35). 

Evaluation of (3.35) at  the boundaries and use of the conditions (3.13b) and (3.14b) 
first gives 

G(')(?, CT) = F@)(T/, v ) - - i P 0 - F v ( ~ ,  C T ) + U ~ ) ,  (B 3) 

and then leads to a recursion formula for P) : 

F'2'(5-2, a)-F(2)([,a) = (U;'-up)+2Fv(g, a). (B 4) 

A corresponding recursion for P@)  follows when the periodicity of all leading- and 
first-order functions with respect to a translation (5, 7) + ([ + 2,7  + 2) is taken into 
account . 
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For (B3) this means 

G ‘ ” ( ~  + 2, a) - G ( 2 ) ( ~ ,  a) = F‘2’(7 + 2, a) - F2’ (7 ,  a), 

and for (3.353) 

P‘2’(5+2,7+2, Cr)-Py5,7,a) 

= [F(”(g + 2 ,  a) -B’(’)(C, a)] + [F‘”(y + 2, a) - F 2 ) ( 7 ,  a)]. (B 6) 

Since the brackets on the right-hand side of this equation also show the periodicity, 
as can be seen with the aid of (3.16), (3.18), (3.21), (3.34) and (B 4), an n-fold 
application of (B 6) results in 

P(2)(5+2n, 7 +2n, a) -P(’)(,$, 7, a) 

= n[ (F(2)(5+ 2 ,  a) - F(2)(5,  rr)] + [F(2)(q + 2, a) - F 2 ) ( 7 ,  a)]. (B 7)  

The same arguments that led to the secular equation (3.21) for PC0) now require 

F2)(t+ 2, a) - F(2)(5, a) 0, (B 8) 

and with (B 4), (3.16a) and (3.17) this is the result already given in (3.38). 

Appendix C. 
We want to replace the operator (a/ar)I+ by an expansion that only uses 

derivatives with respect to the set of coordinates $o,$,a according to (4.11) and 
(4.12). The Lagrangian coordinates $, r are expanded as 

1 
M 

7 = - to(a) + 
?) = $o + 6$(1) + s 2 p  + . . . , 

+ 6V2) + . . . , (C l a )  

(C 1b)  

(C 2) 

and $(‘) and r(‘) are here considered to be functions of ($@, $, a). Thus we have a 
transformation 

In the following we denote partial derivatives with respect to ($, r ,  6) by 

( $ 9  7 > 4  - ( $ O , $ >  4. 

a a a  
a$’ 7’ as’ 

a,o, a,, a,, 

- - 

and those with respect to r ,  a) by 

or by subscripts on the function F 

-F*,, F,, F,. 
Generally we have 

a$ ai7 _ -  a 
- ar - a%,+La,+--a,. ar ar ar 

Since, according to (3.4) and (4.11), 
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(C 5 )  reads 

Now a$,Ja-r and a$/& are to  be examined. We have 

Thus 

By means of the expansion (C 1 a) and the relation (C 7)  we can express a7 f & 
the form 

1 in 

Using (3.9) to  obtain (S IM)  dt,/da = Pir ,  and replacing 
a second-order approximation for a$/ar : 

by (C 8), one obtains 

( ) - 0‘ (1) ++2) -+l) (1) = p0‘{1 - &p;?(#l’ + p [ p -  2 p (7, $o +4 )1i+om3. (c 10) 
3 4  
a? 
- 

2 0  

Now one may use (C 7)  and (C 10) in (C 8) to eliminate the ?-derivatives by 
iteration : * = ~ ~ ) - ( ~ ~ ) + ~ ~ 1 ) ) 1 + 0 ( ~ 3 ) .  (c 11) 

a7 

Equation (C 7)  together with (C 10) and (C 11) enables us to express a/ar), in terms 
of partial derivatives with respect to ($o ,  $, a)  with second-order accuracy, if the 
coordinate functions fl), $@), r(l), r(2) are given in terms of ( $ o ,  $, IT) or ( E ,  7, a) .  The 
final result is 

- = p;{a, + &(a, -  pa, - a 
aT 

+ s2[p;r(?(#l))2 - P;(?p + rb” - 7g $p)] a4 - 6 2  P 2 r 7 ( 1 )  0 4 0  a 
+ 6 2 [ ~ ; 7 2 )  $.p) + $2) $g - ($p) + $31 a,o + o(63)). (C 12) 

So) and YC0) are set to  unity and hence there is no need to calculate $(2),r(2) when 
we carry out the second-order expansions of the ( 2 . 2 6 c , d )  for S and Y in order to 
obtain secular conditions for and Y(I).  
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